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ABSTRACT
Frequency-domain companding can be used in conjunction with
audio coders that produce white coding noise.  In [1-2] it is
demonstrated empirically that this technique colors white coding
noise so that it is better masked by audio signals, resulting in
higher perceived audio quality. This paper offers additional
theoretical background and empirical results on this companding
technique.  A simplifying assumption in [1-2] is analyzed, the
effect of the companding exponent α on the spectral flatness
measure is investigated, and optimal values of α are identified
for PCM and ADPCM speech coding.

1.  INTRODUCTION

The frequency-domain compander described in [1-2] operates on
spectral representations of signals by applying an exponent α, to
each magnitude, leaving phases unchanged:
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In this study we restrict 0 < α ≤ 1.  C( X( f ) , α) is called a
compressor because it reduces the dynamic range of X( f ).  Note
that (1) is perfectly inverted by the expander
X( f ) = C(Y( f ), 1/α).  When compression and expansion (i.e.,
companding) is used in conjunction with a noisy channel, as
shown in Figure 1, we can represent the output Z( f ) as
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Note that Z( f ) approaches X( f ) as the noise Q( f ) goes to zero.
When Q( f ) is non-zero, both the magnitude and phase of Z( f )
are perturbed from the magnitude and phase of X( f ).  In [1-2],
(2) is written as
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where Q( f ) has been approximated as zero in the first factor (to
give a tractable problem), but not in the second factor (to prevent
a trivial problem).  In Section 2, the exact result in (2) is
compared with the approximation in (3). The approximation in
(3) indicates that upon expansion, the original signal X( f ) is
recovered, and the noise spectrum Q( f ) is shaped or colored by
|X( f )|1-α.  Smaller values of α lead to larger amounts of noise
shaping.

From (3), the instantaneous SNR of Z( f ) is
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which is the original SNR modified by a term that depends on the
instantaneous signal level and α.  When X( f ) is large, the SNR
is decreased from its original value, and when X( f ) is small, the
SNR is increased from its original value.  Again, these modifying
effects are strengthened by decreasing α.  In Section 3, we
explore the relationship between α and the spectral flatness
measure.  In Section 4, we investigate the relationship between α
and perceived speech quality.  Optimal values of α are identified
for PCM and ADPCM speech coding.

2.  EVALUATION OF AN APPROXIMATION

The approximation in (3) indicates that the noise in the
reconstructed signal Z( f ) is |X( f )|1-α ·Q( f ). The true noise in
Z( f ) is the expected value of |Z( f )-X( f )|2, where the
expectation is taken over relevant magnitude and phase
distributions for the signal X( f ) and the noise Q( f ).  We have
found this to be an intractable problem, even for simple
distributions.  We have been able to gain insight to (2) and (3)
through simulations.  Our simulations used deterministic signal
levels ranging from -60 to +60 dB, measured relative to the
compander stationary point.  (The compander stationary point is
1 since C(1, α) = 1.)  Samples of Q( f ) were drawn from a
complex distribution with Rayleigh magnitudes and uniform
phases.  The channel noise level was defined to be
10·log10E( |Q( f )|2 ) so that 0 dB would correspond to the
compander stationary point.  The mean of |Z( f )-X( f )|2  was then
calculated across 20,000 samples, converted to dB, and
compared with the noise levels given by (3).



The noise measured by simulation was always larger that the
noise given by (3).  The difference between them, ∆, was greater
for smaller values of α, larger values of channel noise Q( f ), or
smaller values of signal X( f ).  For α ≥ 0.5, we found ∆≤4 dB if
the level of channel noise Q( f ) did not exceed -45 dB.  When
the channel noise was between -45 and -25 dB, then ∆≤10 dB.
When the channel noise was between -25 and -10 dB, we found
∆≤23 dB.  Much larger values of ∆ were seen for smaller values
of α, and larger levels of noise. We conclude that the
approximation in (3) provides a useful conceptual description of
noise shaping, but its numerical results are only useful over a
restricted range.

3.  SPECTRAL FLATNESS MEASURE

The frequency-domain companding described in Figure 1 can
also be described as zero side-information whitening and
coloring.  In analysis-by-synthesis audio coding, the audio signal
is whitened before further coding processes are applied.  A
parametric description of the whitening process (e.g., linear
prediction, reflection, or cepstral coefficients) is usually sent to
the decoder as side information so that corresponding coloring
can be applied there.  In Figure 1, the compressor (whitener)
does not explicitly send side information to the expander
(colorer). The coloring information is embedded within the
compressor output Y( f ), and as long as it is not destroyed by the
addition of Q( f ), the expander can use it to reconstruct X( f ).
Decreasing α leads to a whiter Y( f ), but also increases
sensitivity to Q( f ).  The approximation in (3) obscures this
fundamental trade-off.  The degree of whitening accomplished by
frequency-domain companding can be quantified by the spectral
flatness measure (SFM) which in turn provides a connection to
waveform predictability and prediction error variance [3].

For a simple example, consider X( f ) such that
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Then X( f ) has a spectral slope of s dB/octave, and
Y( f ) = C( X( f ), α) has a spectral slope of α·s dB/octave.  For
0 < α < 1, spectral slopes are reduced.  The SFM of Y( f )
calculated across the band from f0 to f1, with B = f1 - f0 and
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Note that the SFM in (6) is driven towards 1 as α goes to zero.
We measured the impact of compression on the SFM for speech
and audio signals. We used 16 speech files from 8 different
English-language speakers, 4 female and 4 male, sampled at

8000 samples/s.  A separate SFM value was calculated for each
8-ms (64 sample) frame, and a total of 8,224 frames were used.
Twenty music files were used, each containing a distinct musical
style and sampled at 44,100 samples/s.  SFM values were
calculated on 5.8-ms (256 sample) frames, and a total of 6,780
frames were used.  SFM values were calculated for original
signals X( f ), and for compressed signals Y( f ).  Signals were
compressed using  α=0.1, 0.2, … , 0.9.

For these conditions the relationship between log10[SFM(Y( f ))]
and log10[SFM(X( f ))] is very nearly linear:

( )[ ] ( )[ ]log ( ) ( ) log ( ) .10 10SFM SFMY f g X f≅ ⋅α        (7)

Figure 2 provides example results for 6,780 frames of music, at
α=0.1, 0.3, 0.5, 0.7, and 0.9.

The relative RMS error associated with the approximation in (7)
takes a maximal value of 1.3% when α=0.5.  This error
diminishes as α tends towards 0 or 1.

As expected, g(α) < 1 and g(α) increases with α.  This
relationship is described by

g( ) . . . , . .α α α α≅ ⋅ + ⋅ − ≤ ≤05927 04812 00594 01 102 ,           (8)

which has a worst-case relative error of 1.8% at α=0.1.

The effect of compression can also be seen in four SFM
histograms in Figure 3.  These histograms show the distributions
of values of log10(SFM( Y( f ) )) for 15,004 frames of speech and
music, when α=1.0, 0.8, 0.6, and 0.4.  Note that as α decreases,
the mean of the SFM distribution increases, while the width of
the distribution decreases.

4.  OPTIMIZATION OF AUDIO QUALITY

The approximation in (3) indicates that after expansion, the
original signal X( f ) is retrieved, and the noise spectrum Q( f )
has been colored or shaped by |X( f )| 1-α.  This is desirable in
audio compression, because noise shaped in this way is more
easily masked by the signal X( f ), resulting in higher perceived
quality for the received audio Z( f ).  This noise shaping is
alternatively described in (4) as modifications to the SNR.
Equation (2) shows that when α is near zero, Y( f ) can be highly
susceptible to noise.  When α is near 1, little companding gain is
realized.  This section treats the optimization of α between these
extremes for two cases where Q( f ) is approximately white:
quantization noise in PCM and ADPCM speech coders.

Models for masking in the human auditory system are well
established [4].  These models generate masking functions
M(X( f )) that predict the threshold at which listeners will hear
coding noise, given the signal X( f ).  Thus (3) might lead one to
solve for αopt such that
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But the shape of M(X( f )) generally follows the shape of X( f ),
so when Q( f ) is white, (9) generally drives αopt to zero,
indicating that (9) and hence, (3) are not sufficiently good
approximations to actual compander operation.  Using (2) in (9),



followed by evaluation with real audio signals would be more
appropriate.  We chose a more direct approach: simulation of a
compressor feeding a speech coder followed by a decoder which
in turn feeds an expander.  In this case, Q( f ) models the
quantization noise of the coder, which will be approximately
white for PCM and ADPCM coding.  We estimated the
perceived quality of Z( f ) with a measuring normalizing block
(MNB) algorithm [5].  The output of this MNB algorithm
L(AD2) has been shown to have very high correlation with
perceived speech quality as measured in listening experiments
[5].

The simulations cover 15 speech-coder configurations. µ-law
PCM coding at b = 2-10 bits/sample accounts for 9 of these
configurations [6].  ADPCM coding at b = 2-5 bits/sample forms
four more configurations [7].  The final two configurations are
RPE-LTP coding at 13 kbit/s (1.6 bit/sample) and MELP coding
at 2.4 kbit/s (0.3 bit/sample).  RPE-LTP coding is used in the
full-rate GSM standard [8], and MELP is proposed for a United
States Federal Standard [9].  All speech coders use a sample rate
of 8000 samples/s.  Ten values of the companding exponent α
were used with each coder configuration, resulting in a total of
150 conditions to evaluate.  Each condition was evaluated with
128 speech files containing a total of 15 minutes of speech.  Each
file contained a pair of sentences taken from a phonetically
balanced sentence list.  Four female and 4 male speakers each
generated 16 files.  Half of the files were band limited to 200-
3400 Hz using a flat bandpass filter.  The other half were filtered
to simulate the sending frequency response of a typical telephone
handset, in conformance with [10].  Results of these simulations
are shown in Figures 4-6.  These figures give a mean value and a
95% confidence interval for L(AD2) at each condition in the
simulation.

For the PCM configurations L(AD2) is maximized (indicating
maximal perceived speech quality) when α = 0.6, except when
b = 2 bits/sample where the maximizing value is α = 0.5.  Any
increase in L(AD2) from its value at α = 1.0 represents
companding gain.  Companding gain is much greater at moderate
noise levels (b = 4, 5, 6) than when noise is nearly audible (b = 7,
8, 9, 10) or when the noise is very large (b = 2, 3).  Noise
shaping is most effective at moderate levels of noise.  For b ≥ 6,
maximal companding gains are equivalent to adding 1
bit/sample.  For b < 6, maximal companding gains are equivalent
to adding 0.5-0.75 bits/sample.

Note that µ-law PCM itself compands time-domain samples,
resulting in time-domain shaping of quantization noise.  The
instantaneous time-domain sample SNR is (6.02⋅b - 10.11) dB
over a wide range of input levels. By adding the frequency-
domain compander, the noise is shaped in the frequency domain
as well to exploit frequency-domain masking.

Maximal companding gains are much smaller for the ADPCM
configurations, and equate to about 0.2 bits/sample.  Optimizing
values are α = 0.9 when b = 5 or 4, and α = 0.8 when b = 3 or 2.
Larger gains are reported for 7-kHz ADPCM coding of speech
and music in [1].

As expected, the RPE-LTP and MELP coders do not benefit
from this frequency-domain companding technique.  These
coders are optimized for natural speech spectra and compressing

these spectra hurts performance.  The additive white quantization
noise model does not apply to these coders.

5. CONCLUSIONS

The frequency-domain companding technique described here can
be used to improve the perceived audio quality of audio coders
that produce approximately white coding noise.  The
improvements stem from frequency-domain shaping or coloring
of the white coding noise in a way that reduces its audibility.  For
PCM and ADPCM speech coders with nominal 4-kHz
bandwidth, optimal ranges of the companding exponent α are
0.5-0.6 and 0.8-0.9 respectively.  Improvements in estimated
perceived audio quality are equivalent to the addition of
0.2-1.0 bits/sample.  The approximation in (3) is useful because
it provides a conceptual description of the noise shaping process,
but it does not accurately describe compander operation in
general.  Because it obscures the fundamental whitening versus
sensitivity trade-off, it cannot be used to find optimal values of
α.  We have also shown that compression increases log10[SFM]
in a linear way, and the slope of that linear relation is a simple
function of α.

6. REFERENCES

[1] R. Lefebvre & C. Laflamme, “Spectral amplitude warping 
(SAW) for noise spectrum shaping in audio coding,” Proc. 
1997 IEEE ICASSP, Munich, Germany, April 1997, pp. 
335-338.

[2] R. Lefebvre & C. Laflamme, “Shaping coding noise with
frequency-domain companding,” Proc. 1997 IEEE
Workshop on Speech Coding for Telecommunications,
Pocono Manor, PA, Sept. 1997, pp. 61-62.

[3] N. Jayant & P. Noll, Digital Coding of Waveforms.
Englewood Cliffs, NJ: Prentice-Hall, 1984.

[4] S. Voran, “Observations on auditory excitation and masking
patterns,” Proc. 1995 Workshop on Applications of Signal
Processing to Audio and Acoustics, New Paltz, NY, Oct.
1995.

[5] S. Voran, “Estimation of perceived speech quality using
measuring normalizing blocks,” Proc. 1997 IEEE Workshop
on Speech Coding for Telecommunications, Pocono Manor,
PA, Sept. 1997, pp. 83-84.

[6] CCITT (now ITU-T) Recommendation G.711, “Pulse code
modulation of voice frequencies,” Geneva, 1989.

[7] ITU-T Recommendation G.726, “40, 32, 24, 16 kbit/s
adaptive differential pulse code modulation,” Geneva, 1989.

[8] P. Kroon, E.F. Deprettere, & R.J. Sluyter, “Regular-pulse
excitation - a novel approach to effective and efficient
multipulse coding of speech,” IEEE Trans. on Acoustics,
Speech, and Signal Processing, vol. 34, pp. 1054-1063, Oct.
1986.

[9] A.V. McCree, K. Truong, E.B. George, T.P. Barnwell, V.
Viswanathan, “A 2.4 kbits/s MELP coder candidate for the
new U.S. federal standard,” Proc. 1996 IEEE ICASSP,
Atlanta, USA, May 1996, pp. 200-203.

[10] CCITT (now ITU-T) Recommendation P.48, “Specification
for an Intermediate Reference System,” Geneva, 1989.



Compressor
C( ⋅ ,α)

X( f ) Y( f )

Noise:  Q( f )

Expander
C( ⋅ ,1/α)

Z( f )
Σ

Figure 1.  Compander block diagram.
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Figure 3.  SFM histograms.
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Figure 2.  Effect of compression on SFM.

Figure 5.  Estimates of perceived speech quality for ADPCM.
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Figure 4.  Estimates of perceived speech quality for PCM.
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Figure 6.  Estimates of perceived speech quality
for RPE-LTP and MELP.


